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This paper investigates the feasibility of using the rapidly 

growing technology of the SHAPE MEMORY ALLOY actuators in actively 

controlling the buckling of large flexible structures. 

The need for such buckling control systems is becoming inevitable 

as the new design trends of large space structures have resulted in 

the use of structural members that are long, slender and very 

flexible. In addition , as these truss members are subjected mainly 

to longitudinal loading they become susecptible to structural 

instabilities due to buckling. Proper control of such instabilities 

is essential to the effective performance of the structures as stable 

platforms for communication and observation. 

The paper presents mathematical models that simulate the dynamic 

characteristics of the shape memory actuator, the compressive 

structural members and the associated active control system. 

A closed- loop computer-controlled system is designed, based on 

the developed mathematical models, and implemented to control the 

buckling of simple beams. The performance of the computer-controlled 

system is evaluated experimentally and compared with the theoretical 

predictions to validate the developed models. 

Tho obtained results emphasize the importance of buckling control 

and suggest the potential of the Shape Memory Acttutors as attractive 

means for controlling structural deformation in a simple and reliable 

e 

way. 
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The construction and operation of large structures , which are 

extremely flexible and inherently low in natural damping, have posed 

challenging problems particularly when these structures are used as 

stable platforms for communication and observation. The strict 

constraints imposed on the structural deflections, under loads, has 

necessitated the use of various types of active [l-21 and passive 

[ 3 - 4 1  control systems. Common among all these systems is the emphasis 

on controlling the transverse bending [ 5 - 6 1  and/or torsional [7] modes 

of the structures in one way or another. No effort has been exerted 

to control structural deflections resulting from axial loading. This 

is inspite of the fact that all the structural members, with pinned 

joints, are subjected primarily to axial loading. Also, as the new 

design trends have resulted in structural members that are long , 

slender and flexible , then these members become highly suscptible to 

structural instabilities due to buckling. 

Therefore, it is the purpose of this study to investigate, both 

theoretically and experimentally, the feasibility of devising an 

active buckling control system as means for enhancing the elastic 

stability characteristics of compressive structural members. The 

study aims also at demonstrating the feasibility of using the Shape 

Hemory Actuators, which are made of Nickel-Titanium alloy (NITINOL) 

[ B ]  to control the buckling of the compressive structural members. 

T E f E  S H A P E  M E M O R Y  A C T U A T O R  

Background 

The shape memory NITINOL actuators are selected, for this study, 

because of their numerous attractive features that favor them over 
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other viable actuators such as the piezo-electric actuators [ 1 - 2 ] .  

The NITINOL actuators are capable of generating large displacements 

( about 1 - 3 cm) when energized by relatively low voltages ( about 5 

volts) [9-lo]. On the contrary, piezo-electric actuators require very 

high voltages ( in the order of 100 to 300 volts) to produce 

micro-displacements as indicated in many references [ll-121. Such low 

excitation voltages and large displacement capabilities of the NITINOL 

actuators were the main reasons behind their wide utilization in 

numerous applications. Examples include : the HITACHI robot hand [ 131 

and other robotic devices [14], radiator valves [15], greenhouse vents 

.[IS] , liquid gas switches [15] , etc. In all these applications 

NITINOL actuators have demonstrated their light weight , large force 

and displacement capabilities as well as low power consumption. In 

1987, Baz et a1 [lo] have successfuly used the NITINOL actuators as 

means for controlling the flexural vibrations of cantilever beams. 

Accordingly, the present study is a natural extension of that work. 

Operating Principle 

The shape memory actuator relies in its operation on the unique 

behavior of the NITINOL alloy when it undergoes a martensitic phase 

transformation. When the actuator, shown as a helical spring in Figure 

(I), is cooled below its martensitic transformation temperature and 

deformed, it will remember its original shape and return to it if 

heated back past the transformation temperature. The phase 

transformation to austenite produces significant forces as the alloy 

recovers its original shape. Therefore the alloy can act as an 

actuator converting thermal energy to mechanical energy. With recent 

advances in NITINOL technology, phase transformation temperatures of 
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Figure (1) - A schematic drawing of a typical Shape memory NITINOL 
actuator. 
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about 40' to 5OoC are common. Therefore, natural cooling of the 

actuator A to ambient room temperature will make it assume its 

martensite phase. A passive restoring spring B can be used to stretch 

the cold matensite actuator to assume position . When heat is 

applied to the actuator, by passing electric current through it, it 

undergoes the phase transformation. The actuator shrinks to assume a 

memorized position P2 and provides in the process a significant force 

F. This force can pull the piston C ,inside the cylinder D , 

moving the end E of the actuator relative to the end O.Therefore, if 

the two ends E and 0 are connected to two points on a flexible 

structure , the spacing between these two points can be controlled in 

the presence of external disturbances. 

Such position memorization characteristics of the NITINOL 

actuator is utilized to memorize the shape of the unbuckled beam . Any 
deviations from this shape causes the control system to energize the 

actuator to bring the beam back to its memorized position. 

0 

The energy and the momentum equations that describe the thermal 

and dynamic characteristics of the NITINOL actuator are summarized in 

the appendix . For a more comprehensive analysis, the work of Baz et 
a1 [lo] should be consulted . The presented equations are .applied to 

the NITINOL actuator number 925100-01 produced by RAYCHEM corporation 

[la] which is used in the buckling control system developed in this 

study . 
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Figure (2) shows a schematic drawing of the system used to 

control the buckling of a flexible elastic member A .  The member is 

subjected to compressive loading using a pneumatic power cylinder D 

which is coupled directly to the member via a movable base C. The 

deflection of the mid-span of the beam, during the occurrence of the 

buckling, is sensed by a non-contacting proximity sensor F.The 

sensor serves also as a physical stop to prevent the beam from 

undergoing excessive deflections as it buckles under load. The 

position signal is fed into an analog-to-digital (A/D) converter to a 

micro-processor to manipulate it using an ON-OFF controller with an 

adjustable dead-band . The computed control action is sent via a 

digital-to-analog (D/A) converter to a power amplifier to provide the 

power necessary to drive the NITINOL actuator G . When energized , the 

actuator shrinks pulling the power piston upward to reduce its lateral 

deflection and prevent the occurrence of buckling. 

When the actuator brings the beam back to its unbuckled position 

, the computer de-energizes the actuator by turning o f f  its power. 

The actuator cools down , past its martensitic transformation 

temperature, and returns back to its original position under the 

action of the restoring spring H. 

Figure (3) shows a block diagram of the devised control system. 

The evaluation of the control system performance is achieved by 

0 

monitoring the pressure of the compressed gas powering the pneumatic 

cylinder , which is proportional to the applied compressive load, 

using a pressure transducer E. The transducer output signal is plotted 

as a function of time on a chart recorder along with the corresponding 
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Figure (2) - A schematic drawing of the buckling control system. 
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Figure (3) - A block diagram of the buckling control system. 
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beam position signal. 

M O D E L I N G  O F  T H E  B E A M  D Y N A M I C S  

The dynamic characteristics of the flexible beam under the action 

of external compressive loading and the action of the NITINOL actuator 

are determined by considering the finite element model of the 

compressive member shown in Figure (4). The model presented is based 

on the linear theory of small deflections. 

St i f fness  matrix of  the beam element 

The element stiffness is determined by equating the strain 

energy,resulting from the deflection of each element, to the work done 

by the external forces gives 

0 
1 1 

E I I (d2y/dx2)2 dx - 6* q + P I (dy/dx)2 dx 
0 where E1 is the flexural rigidity of the element, 1 is the 

(1) 
0 0 

element length, 6 is the deflection vector of the nodal points 

bounding the element and y is the transverse deflection of any point 

along the x axis of the beam. 0 

The U S  of equation (1) is the strain energy whereas the first 

0 term of the RHS is the work done by the transverse loads q and the 

second term is the work done by the resultant compressive loads P. 

Defining the element stiffness Ki by 

0 

0 

q - K 6  
i 

Then equation (1) can be used, along with a properly selected 

deflection function [19], to give the element stiffness matrix Ki as 
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Figure (4) - The finite element of a beam subjected to axial and 
transverse loadings. 
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follows : 

- - 
30 - 3 1  - 3 6  - 3 1  

-31 412 31 -12 

-36 31 36 31 

-31 -12 31 4f2 - 

( 3 )  
E1 

Ki- - 
l 3  

12 -61 -12 - 6 1  

-61 412 6 1  212 

-12 6 1  12 61 

-61 212 6 1  412 

It can be seen that the element stiffness matrix consists of two 

matrices : the first is the conventional transverse stiffness and the 

second represents the reduction effect that the compressive axial 

loading has on the bending stiffness. Accordingly, as the axial load 

is increased the bending stiffness decreases and eventually vanishes 

as the axial load becomes equal to the critical buckling load. 

The overall stiffness matrix K of the beam can then be determined 

by combining the stiffness matrices of the individual finite elements 

making up the beam . The principle of superposition is used in this 

regard as shown , for example, in Ref.[l9] and [20]. 

Mass matrix of the beam 

The inertial properties of the beam are determined by assuming 

the mass and the inertia of the beam to be lumped at the nodal points 

[20] . This gives the mass matrix I! as follows : 

M .. 
m 
n 

U 
J 
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where m and J are the equivelant mass and mass moment of 
i i 

inertia of the beam elements connected to node i. 

Eauation of motion of the beam 

The overall stiffness and mass matrices (K and M )are used 

to form the equation of motion of the beam as follows : 
. .  

H 6  + K 6 - q  ( 5 )  
.. 

where 6 and 6 are the deflection and acceleration vectors of the nodal 

points. 

Equation (5) defines the dynamic characteristics of the flexible 

beam as influenced by its gemetrical , elastic and inertial parameters 

as well as the external transverse and axial loads (q and P). It 

should be pointed out that the resultant axial load P is given by: 

P - F  - F  ( 6 )  
P a 

where F is the compressive axial load applied to the beam and F is 

the control force developed by the NITINOL actuator. This force is 
P 

given by 

8 - Fd 
F - F - F  

8 
(7) 

In the above equation F,  F and Fd are the phase transformation, 

The phase the spring and the damping forces of the NITINOL actuator. 

transformation force is given by equation (A-11) in the appendix. The 

spring and damping forces of the actuator are determined by assuming 

the buckling curve to take the form : 

s i n ( n x / L )  (8) Y 6n12 

nJ2 
where 6 is transverse deflection of the mid-span point of the 

beam. Such deflection can be related ,geometrically, to the axial 

deflection x of the beam-actuator system as follows : 
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Length 
(cm) 

125 

( 9 )  

Width Thickness Young's Mzdulus Density 
(cm) (cm) ( G  N/m 1 (gm/cm 1 

2.5 0.3125 2 . 8  1.2 

L 

x - 1/2 1 ( d Y / W 2  dx , 

( = dnI2 l 2  / ( 4 L ) 

F - K a x - K ( A 6n12 ) 2 /  (4 L) , 

0 

e which yields 

x - (10) 

Accordingly, 

e (11) 

(12) 
2 and Fd - C x - [ Ca x 6 / (2 L).] 6n12 

4 2  

i.e. these two forces are related to the transverse deflection 

6 and velocity 6 of the mid-span point of the beam. In equations 

(11) and (12) , K and Ca are the stiffness and the damping 

coefficient of the actuator. 

n I 2  n/2 e 

A N A L Y S I S  O F  T H E  B U C K L I N G  C O N T R O L  

S Y S T E M  

e The presented dynamic model of the flexible beam is coupled 

with the NITINOL actuator model , given in the appendix, to predict 

the performance of the buckling control system under different 

0 operating and design conditions. 

Figure (5) shows the flow chart of the computational 

algorithm used to analyze the performance of the control system. The 

a algorithm is applied to a fixed-fixed flexible beam whose main 

geometrical and physical properties are given in Table (1). 

0 

Table (1) - Geometrical and physical properties of the flexible 
Beam 

For such a beam the critical buckling load , based on Euler's 

theory , is 4.4 N ( or 1 pound) [19]. 
0 
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Figure (5) - Flow chart of the computational algorithm. 



e 

a 

0 

0 

a 

0 

e 

e 

0 

A typical theoretical response characteristics of the flexible 

beam is shown in Figure (6) when it is subjected to a gradually 

increasing axial force. The time history of such axial load is shown 

in Figure (6-a) indicating a uniform and very slow rise rate of 0.0917 

N/s. It can be seen that the uncontrolled beam , which is originally 

displaced from the vertical by 0.125 mm (0.005 in), buckles when the 

axial load reaches the critical load. . This occurs after a time of 

55.9 seconds as shown in Figure (6-b) . The figure shows also the 

time response of the beam when controlled by five NITINOL actuators 

with a dead band of 0.3125 mm. In this case the actuators are 

energiked by 1.6 volts. It is evident that the beam does not buckle 

even when the applied axial load exceeds the critical load. The 

actuators control forces counterbalance che applied load and prevent 

the beam from buckling beyond the set dead band . Figure (6-c) 

displays the corresponding time history of the actuators control 

forces. It is clear that the actuators are energized when the beam 

starts to buckle after 55.9 seconds. But, once the actuators forces 

build to a level that brings the axial load below the critical load 

and the beam deflection below the set dead band then the controller 

de-energizes the actuators. This is manifested clearly by the 

exponetial drop of the actuators forces : However, as the axial load 

increases again beyond the critical load the controller energizes the 

actuators again to avoid the occurrence of buckling . Such a process 
repeats itself over and over again as can be seen from Figure (6-c). 

It is important to note that the beam remains unbuckled inspite of the 

continuous increase of the applied axial load . The reason for this 
phenomenon is attributed to the fact that the actuators forces build 

up continuously to match the increase in the axial load. Such an 
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Figure (6-c) - Theoretical time history of the actuator control force. 



e 
increasing trend of the actuators forces is seen clearly from Figure 

(6-c). Obviously, the beam will eventually buckle when the actuators 

e forces reach their maximum limit and become incapable of 

counter-acting the effect of the continuously increasing axial load. 

e Figure (6-b) shows also a comparison between the theoretical and 

experimental time responses of the uncontrolled and the controlled 

beam. The figure indicates that there is a close agreement between 

the experimental results and the theoretical predictions. 

E X P E R I M E N T A . L  R E S U L T S  

The performance of the buckling control system is measured for 

different widths of the controller dead band and various values of the 

i 

e 

0 

0 

0 

actuators' energization voltage. 

Figure (7 )  shows the experimental time responses of the beam when 

the energization voltage. is 1.6 volts and for three values of- the 

controller dead band. The presented results indicate that the 

performance of the controller deteriorates as the width of the dead 

band is increased. The controller performance degrades also when the 

actuators' energization voltage is reduced as can be seen from Figure 

(8) 

C O N C L U S I O N S  

This paper has presented , for the first time, a new class of 

active control systems to control the buckling of elastic beams. Such 

systems add a new dimension to the present state-of-the-art which 

concentrates mainly on the control of transverse or torsional 
- 17 - 
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vibrations of flexible structures. The devised controller relies in 

its operation on the use of shape memory NITINOL actuators. 

Theoretical models have been developed to describe the dynamics of the 

NITINOL actuator , the flexible beam and the control system. The 

validity of the developed models has been checked against experimental 

results. The obtained results indicate close agreement between the 

experimental results and the theoretical predictions. Furthermore, 

the testing of a computer-controlled system demonstrated the 

feasibility of the active control system in preventing the buckling of 

a flexible beam. Also, the results obtained suggest the potential of 

using NITINOL actuators as attractive alternative to the presently 

available types of actuators. The implementation of the controller is 

seen to be very simple and the actuators are found to require low 

excitation voltages to produce large control forces and 

deflections. 

The mathematical models presented in this study provides 

invaluable tools for the design and the analysis of NITINOL actuators 

and their associated control systems. 
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A P P E N D I X  

M A T H E M A T I C A L  M O D E L I N G  
of 

T H E  D Y N A M I C S  of N I T I N O L  A C T U A T O R S  

A mathematical model is developed to describe the dynamic 

characteristics of NITINOL actuators. It incorporates the energy and 

momentum equations as well as the phase transformation relationships. 

1. The energy and phase transformation equations 

When a voltage V and a current I are applied suddenly to the 

NITINOL actuator , as shown in Figure (A-1-a) ,its temperature T rises 

from ambient temperature T according to the following energy equation 

input energy - lost energy + stored energy 

(A-1) -h A ( T- T ) + m c dT/dt 
a P 

V I  

Figure (A-1-b) shows a typical temperature history of the 

actuator when subjected to step input voltage. The actuator 

temperature T rises in an exponential form as dictated by equation 

(A-1) . When the actuator temperature reaches the phase 

transformation temperature TT , it remains constant until the phase 

transformation process is completed. The time tl needed to reach TT 

can be determined from equation (A-1) , 

tl = 7 In [ I/ ( 1- (T~-T,)/(v ~ / h  A) 1 ] , (A-2) th 

where rth is the thermal time constant of the actuator , given by 

T - m c  / h A  (A-3) 
th P 

Also, the time (t2- tl) , needed to complete the phase 

transformation can be determined from : 

t - t  - m Q 1 / V I  - 4 r h  ( A - 4 )  
2 1  

- 21 - 
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Once the phase transformation is completed , the actuator 

temperature starts increasing again to reach a maximum temperature 

T given by 
max 

T - T + V I / h A  , ( A - 5 )  max a 

after a period (t"- t,) , given by 
J L  

r 1 

t - t - r In 1 1/ ( 1 - (T - TT)/(V I/~A)~J (A-6) 3 2 th max 

When 

begins to 

the applied voltage is switched off suddenly, the actuator 

cool by natural convection. After a period (t4-t3) given by 
r 1 

the actuator temperature reaches the martensite transformation 

temperature TT. At that temperature the NITINOL starts to transform 

from austenite to martensite as it loses its latent heat to the 

ambient. This transformation occurs over a period of time (ts-t4) 

given by 

ts- t4 - m Q, / [ h A ( TT- T) a ] - 4 r (A-8) 

Following the completion of this transformation process the 

actuator continues to cool exponentially from TT to within 2% of T 

over a time period (t -t ) given by : 
6 5  

r 1 
t6 - t5 - r In (TT-T )/ 0.02 T 

th 1 a (A-9) 

Equations (A-1) through (A-9)  describe completely the thermal 

behavior of a NITINOL actuator when subjected to step voltage changes. 

2 .  The momentum equation 

The motion of the NITINOL actuator is caused by the generation 

and the recovery of the forces resulting from its phase 

transformation. Figure (A-1-c) shows the history of these phase 

transformation forces , conforming to the temperature history outlined 

above. It is assumed that the forces resulting front thermal expansion 
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and contraction of the actuator are negligible compared to the 

transformation forces . Furthermore, it is assumed that the phase 

transformation forces are generated and recovered exponentially in 

time. With such assumptions, the equation of motion of the actuator 

can be written as : 
. .  

m X  + C X + K X -F(t) (A- IO) 
. a  

Ka, X and F are the equivelant mass, damping coefficient, where m, 

stiffness, displacement and transformation force respectively. The 

‘a 

transformaion force is given by : 

. F(t) 0 0 for 0 < t < tl 

- F [I-. -(t-t,)/r, 3 tl< t < t2 
m u  

- F  
max 

tz< t < tg 

- F  [ e  - (t-t,)/rc 1 t,< t < t5 
m u  

- 0  t5< t < tg 

where 

F - K  X 
m u  a o . 3 1  

(A-12) 

with X as the maximum deflection of the actuator which is set 

during its training phase. 
max 

The resulting displacement of the NITINOL actuator can be 

obtained by integrating equation (A-10) and a typical time history 

will be as shown in Figure (A-1-d). It is seen that the actuator 

remains stationary until its temperature reaches T . It then starts 
shrinking according to the second order differential equation (A-10) 

t 

under the influence of the gradually increasing transformation force 

F, of equation (A-12b). A final maximum deflection X is attained 

and maintained as long as the applied voltage remains unchanged. 

max 

Once the applied voltage is switched of f ,  the actuator will stay 
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stationary at X,, until it cools down to T . At this point , the 

phase recovery force will gradually bring the actuator back to its 

original position. 

T 

It is , therefore, evident that the processes of heating, phase 

transformation, cooling and actuator motion are interacting closely to 

control the operation of the actuator. 

APPLICATION OF THE MODEL 

The developed dynamic model of the NITINOL actuator is applied to 

RAYCHEM's actuator (model # 925100-01) in order to identify its basic 

thermal and dynamic parameters using the experimental data published 

by Yeager (161. Table (A-1) summarizes the basic operating parameters 

of the actuator and Table (A-2) lists its main physical 

properties. Further measurements indicated that the actuator is made 

of a wire that is 0.075 cm in diameter which weighs 0.37 gm. 

Using the above information, it was possible to predict the 

theoretical performance characteristics of the actuator. Figures 

(A-2-a) through (A-2-d) present comparisons between such theoretical 

predictions and the experimental results of Yeager [16]. Figure 

(A-2-a) displays the effect of the current, flowing through the 

actuator , on the time elapsed before the actuator starts to move and 

to reach 90% of its final stroke. The effects of varying the ambient 

temperature on the heating and cooling times are shown in Figures 

(A-2-b) and (A-2-c) respectively. Additional comparisons are shown in 

Figure (A-2-d) between the theoretical and experimental time responses 

of the actuator, when heated by different electric currents . In these 
comparisons the actuator is assumed to be critically damped with a 

damping coefficient of 20 Ns/m. This assumption is clearly justified 
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a 

by the experimental results. Also, the heat transfer coefficient h is 

assumed to be 18 w/m2sok for natural convection in moderately still 

air . 

With these assumptions, it is evident that the theoretical 

predictions are in close agreement with the measured performance 

charactersitics. 

- 27 - 



e 

e 

e 

a 

a 

e 

0 

0 

0 

~~ ~~~ ~~~~ ~ ~~ 

Table A-1 - Operating parameters of Raychem's Actuator [16] 

P A R A M E T E R  

1. stroke (X ) 

2 .  overall length (fully extended) 
3. operating force (P ) 

4 .  overload force 
5 . .  reset force 
6 .  self actuating temperature 
7 .  maximum current 
8 .  minimum current to actuate 
9. actuator electric resistance 

* time to start 
* time to 90% complete 
* time to start 
* time to 90% complete 

max 

max 

10. time to actuate at 4 A : 

11. time to reset after 10 min on : 

V A L U E  

2 . 5  cm 

8 . 1 2  cm 
4 . 5  N 
6 . 8  N 
4.0 N 

5 . 0  A 
2 . 0  A 
0 . 2  n 

2 . 5  s 
6 . 0  s 

3 . 0  s 
7 . 0  s 

74 O C  

Table A-2 - Physical Properties of NITINOL Actuators 

P R O P E R T Y  

I. Phase Properties 
1 1. cooling transformation temp. (TJ 

2. heating transformation temp. (TT) 
3. latent heat of transformation2(Q ) 1 
4 .  percentage shape memory 

1 

3 

3 11. Physical properties 

5 .  density 
6 .  thermal capacitance 

a [I1 . Mechanical properties 
7. Young's modulus (E) 
8. Yield Strength by 1 

V A L U E  

5 2 . 5  O C  

6 6 . 0  O C  

12,620 J/Kg 

4 - 8 %  

6 . 5  p/cm3 
883 .0  J/kg°C 

7 0 . 0  GPa 
420 .0  MPa 

1 .  Roforonco [le] , 2.  Roformco [171 and 3 .  Referonco [181 
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N O M E N C L A T U R E  

Latin Letters 

A 
C 

a 

C 
P 
d 

db 
E 
F 
F 
a 

Fd 

Fmax 
F 
F 
h 
I 
I 

P 

s 

Ji 
K 
L 
1 
m 
m 

M 
n 
P 

I 

Q, 

qi 

t 
T 
T 

8 

m a  

TT 
X 
X 
Y 
m u  

surface area of actuator 
damping coefficient of actuator 

specific heat of actuator material 

diameter of actuator wire 

dead band of controller 

Young's modulus of beam 
phase transformation force 
actuator force 

damping force of actuator 

maximum actuator force 

applied pneumatic load 

spring force of actuator 

heat transfer coefficient 
current passing through the actuator 

area moment of inertia of beam 

mass moment of inertia of element i 
stiffness matrix of beam 
beam length 
element length 
mass of actuator 
mass of element i 

mass matrix of beam 
number of beam elements 
total axial force acting on beam 
latent heat of transformation of NITINOL 
transverse load (or moment) acting on 

node i 
time 
ambient temperature 

maximum actuator temperature 

phase transformation temperature 

position along longitudinal axis of beam 
maximum deflection of actuator 

transverse deflection of mid-span of beam 
desired transverse position of mid-span of 

beam 

Greek Letters 

6 4  linear and angular deflection of beam 
A. - 31 ' - 

2 m 
N s/m 

J/kg°C 
m 

m 

N/m2 
N 
N 
N s/m 
N 
N 
N 
J/m2soC 
U P  
m 

Nmsz/rad 

4 

N/m 
m 
m 
kg 
kg 
kg 

N 
J F g  
N, Nm 

S 

OC 

OC 

OC 

m 
m 
m 

m 

m, rad. 



7 

T 

T 

C 

h 

th 

angular deflection of node i 

cooling time constant of actuator 

heating time constant of actuator 

thermal time constant of actuator 

- 32 - 

rad. 

S 

S 

S 


